Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.

Identifieur interne : 000447 ( Main/Exploration ); précédent : 000446; suivant : 000448

The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.

Auteurs : Emiliano Matos-Perdomo [Espagne] ; Félix Machín [Espagne]

Source :

RBID : pubmed:29166821

Descripteurs français

English descriptors

Abstract

Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.

DOI: 10.1080/15384101.2017.1407890
PubMed: 29166821
PubMed Central: PMC5884360


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.</title>
<author>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife </wicri:regionArea>
<wicri:noRegion>Santa Cruz de Tenerife </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>b Universidad de La Laguna , Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>b Universidad de La Laguna , Tenerife </wicri:regionArea>
<wicri:noRegion>Tenerife </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife </wicri:regionArea>
<wicri:noRegion>Santa Cruz de Tenerife </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29166821</idno>
<idno type="pmid">29166821</idno>
<idno type="doi">10.1080/15384101.2017.1407890</idno>
<idno type="pmc">PMC5884360</idno>
<idno type="wicri:Area/Main/Corpus">000671</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000671</idno>
<idno type="wicri:Area/Main/Curation">000671</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000671</idno>
<idno type="wicri:Area/Main/Exploration">000671</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.</title>
<author>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife </wicri:regionArea>
<wicri:noRegion>Santa Cruz de Tenerife </wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>b Universidad de La Laguna , Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>b Universidad de La Laguna , Tenerife </wicri:regionArea>
<wicri:noRegion>Tenerife </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife </wicri:regionArea>
<wicri:noRegion>Santa Cruz de Tenerife </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Anaphase (MeSH)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>DNA, Ribosomal (chemistry)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>GTP-Binding Proteins (metabolism)</term>
<term>Hot Temperature (MeSH)</term>
<term>Indoleacetic Acids (MeSH)</term>
<term>Metaphase (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Protein Tyrosine Phosphatases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Telophase (MeSH)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
<term>Transcription Factors (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (composition chimique)</term>
<term>Acides indolacétiques (MeSH)</term>
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Anaphase (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Facteurs de transcription (physiologie)</term>
<term>Métaphase (génétique)</term>
<term>Protein Tyrosine Phosphatases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines G (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Température élevée (MeSH)</term>
<term>Télophase (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Cell Cycle Proteins</term>
<term>DNA-Binding Proteins</term>
<term>GTP-Binding Proteins</term>
<term>Multiprotein Complexes</term>
<term>Protein Tyrosine Phosphatases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metaphase</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Métaphase</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Complexes multiprotéiques</term>
<term>Protein Tyrosine Phosphatases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines G</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaphase</term>
<term>Hot Temperature</term>
<term>Indoleacetic Acids</term>
<term>Telophase</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Anaphase</term>
<term>Température élevée</term>
<term>Télophase</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29166821</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.</ArticleTitle>
<Pagination>
<MedlinePgn>200-215</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15384101.2017.1407890</ELocationID>
<Abstract>
<AbstractText>Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matos-Perdomo</LastName>
<ForeName>Emiliano</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0001-9783-3591</Identifier>
<AffiliationInfo>
<Affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Universidad de La Laguna , Tenerife , Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Machín</LastName>
<ForeName>Félix</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0003-4559-7798</Identifier>
<AffiliationInfo>
<Affiliation>a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C074860">CDC14 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082279">CDC15 protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C108312">condensin complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.21</RegistryNumber>
<NameOfSubstance UI="C081927">CDC5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="D017027">Protein Tyrosine Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D019204">GTP-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000705" MajorTopicYN="N">Anaphase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019204" MajorTopicYN="N">GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="Y">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008677" MajorTopicYN="N">Metaphase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017027" MajorTopicYN="N">Protein Tyrosine Phosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013692" MajorTopicYN="N">Telophase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cdc14</Keyword>
<Keyword MajorTopicYN="Y">Cdc15</Keyword>
<Keyword MajorTopicYN="Y">Cdc5</Keyword>
<Keyword MajorTopicYN="Y">Cdc60</Keyword>
<Keyword MajorTopicYN="Y">Heat stress</Keyword>
<Keyword MajorTopicYN="Y">TORC1</Keyword>
<Keyword MajorTopicYN="Y">aid degron</Keyword>
<Keyword MajorTopicYN="Y">condensin</Keyword>
<Keyword MajorTopicYN="Y">rapamycin</Keyword>
<Keyword MajorTopicYN="Y">ribosomal DNA</Keyword>
<Keyword MajorTopicYN="Y">temperature-sensitive allele</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29166821</ArticleId>
<ArticleId IdType="doi">10.1080/15384101.2017.1407890</ArticleId>
<ArticleId IdType="pmc">PMC5884360</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2004 May 14;117(4):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Jul 7;63(1):60-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27320198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Motil Cytoskeleton. 1991;20(1):47-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1661641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Jun 19;22(12):1128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Oncol Hematol. 2016 Jan;97:56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26315383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jan 25;108(2):207-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Dec 03;5:5652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25466415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 May 18;105(4):459-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jun 30;16(9):857-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1964 Apr;49:649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14156925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1157-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 May 15;149(4):811-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1967 May;93(5):1662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5337848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1972 Mar 28;65(2):243-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4557193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2017 Mar;25(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28181049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Cancer Res. 1977;24:223-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">322459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Jan 4;36(1):79-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27852625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1973 Sep;115(3):966-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4580573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jun 14;294(3):687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12056824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 10;15(3):e2000245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28282370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Apr;3(4):496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 14;284(33):21908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 May 31;15(9):2050-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27210759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Dec;192(4):1165-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23212898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25986377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Nov 6;27(21):3248-3263.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2017 Jun 3;16(11):1118-1127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Feb 25;164(5):847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Jul 01;5(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Apr 29;157(3):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11970961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Jun 3;28(11):1562-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Oct;7(20):3262-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Oct 3;91(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 May 14;34(4):416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 16;97(2):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10219245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 16;97(2):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10219244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Dec;123(6 Pt 2):1635-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8276886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Aug 17;19(2):232-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Dec 1;24(23):2861-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25454593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:203-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Sep;30(9):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2013 Nov;19(11):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):44817-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 12;458(7235):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Apr 29;398(6730):818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10235265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):448-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17203076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Feb 15;29(4):426-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(2):200-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jul;8(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2016 Feb;62(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 May;125(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8175878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jun 19;173(6):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jun 4;12(11):944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2015 Jul;37(7):755-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25988527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98 (13):7313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Jul;3(7):960-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 17;168(2):209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 1;400(6739):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10403247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1974 Jan 11;183(4120):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4587263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Dec;6(12 ):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Jun;41(2):553-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(16):6239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Mar 1;9(5):587-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7698648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Aug;20(16):3671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(2):e1002509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Mar 4;156(5):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jan 1;18(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
</noRegion>
<name sortKey="Machin, Felix" sort="Machin, Felix" uniqKey="Machin F" first="Félix" last="Machín">Félix Machín</name>
<name sortKey="Matos Perdomo, Emiliano" sort="Matos Perdomo, Emiliano" uniqKey="Matos Perdomo E" first="Emiliano" last="Matos-Perdomo">Emiliano Matos-Perdomo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000447 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000447 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29166821
   |texte=   The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29166821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020